
Oak Ridge National Laboratory

U. S. Department of Energy

Chaotic-Identity Maps for Robustness Estimation

of Exascale Computations

Nagi Rao

(Nageswara S. V. Rao)

Oak Ridge National Laboratory

IEEE Workshop on Fault Tolerance for HPC at Extreme Scale

June 25, 2012, Boston, MA

Research Sponsored by

Applied Mathematics Program, U.S. Department of Energy

Outline

1. Introduction

2. Chaotic-Identity Maps

3. Diagnosis Pipelines

4. Confidence Estimates

5. Simulation Results

6. Conclusions

• Exascale computing systems are expected to have processor cores and
other components in the numbers of millions.

– components with expected life-span of ten years

• ~100k hours/component = 10 failures among 1M components

– codes that run for a few hours likely experience failures of several
components.

Inherent Failures in Exascale Computing Systems

• Failure rates limit the effectiveness of current
check-pointing:

– run-times could be of the order of
several hours for exascale systems

– transient silent errors may lead to
erroneous computations

• Failures will be integral part of exascale
computations – must be explicitly accounted

– code outputs must be quantified with
confidence estimates

• specific to system failure profile

• justifiable by measurements

1M components
~10 failures/hour

• Foundational works:

– von Neumann studied (in 1950s) mathematical aspects of achieving
reliable computations over systems with unreliable components

– subsequent reliability improvements in computing systems, perhaps,
led to such studies not being extensively continued

• Deployed systems: computing systems in satellites

– deployed over past decades - enhanced with Software-Implemented
Hardware Fault Tolerance (SIHFT) methods to counteract errors due
to radiation in space environments.

But, exacale computations present new challenges

– sheer size and system complexity makes dynamic profiling of the
failures and robustness complicated

– computation becomes inherently probabilistic:

• for most applications, 100% guarantee of robustness against
failures in not possible

• requires confidence measures for code outputs – running to
completion is not sufficient

 Related Areas

System Profiling and Application Tracing

System Diagnosis and Profiling:
•Executed at the beginning for an initial system profile

- repeated periodically or triggered by failure events.
•Typically, all system resources are devoted for initial profiling

•Our method:

- execute diagnosis modules customized to static and silent failures
in processing nodes, memory units and interconnects
- generate robustness estimates from outputs of diagnosis modules.

Application Tracing:

•diagnosis modules are strategically inserted into application codes
-during compilation or preprocessing

• confidence measures are estimated for their outputs.

Basic idea: execution paths of these tracer codes “follow” along the same
components as the application codes:

•processing nodes, memory elements and interconnect links,

Very important case: no detected failures lead to higher confidence for
application codes – detection is only a part of our goal

Our approach: synthesis of methods from fault diagnosis, chaotic
Poincare maps, and statistical estimation:

a) Diagnosis methods: identify computation errors due to
component failures, in arithmetic and logic unit (ALU), memory
and cross-connect, by strategically guiding the execution paths:

i. system diagnosis pipelines

ii. application traces

b) Poincare maps amplify effects of component failures making
them quickly detectable,

c) Statistical estimation methods process data from execution
traces to generate

i. system robustness profiles

ii. confidence estimates for applications

 Our Approach

Framework for System Profiling and Application Tracing

System profiles can be used to identify computing zones
Applications can be executed in suitable zones and traced to generate confidence
estimates

Chaotic Poincare maps

Poincare Map:

Trajectory

Examples:
 logistic map:

 tent map:

 Hennon map

: d dM  

 1i iX M X 

0 1 2, , ,X X X

   2, ,HM X Y a X bY X  

   1
aLM X aX X 

 
 

2 1/ 2

2 1 1/ 2
T

X if X
M X

X if X


 

 

Simple computations generate seemingly complex trajectories

a=4

 0,1X 

 0,1X 

Chaotic maps amplify state errors

Chaotic trajectories: is chaotic if
(i) it is not asymptotically periodic, and
(ii) Lyapunov exponent is positive

Key Property: Extreme sensitivity to states: small differences in states lead
to rapidly divergent trajectories

differences between two trajectories

0 1 2, , ,X X X

L ln 0M

dM

dX
 

 one of the states corrupted at t=50

/100i i iX X X 

5/10i i iX X X 

4/10i i iX X X 

/100i i iX X X 

19

23

Poincare maps for fault detection
Poincare maps computed in parallel at different nodes: fault at one will
lead to quick divergence of the outputs, depending on:

•Type of faults: Wide range of faults in
•arithmetic and logical operations
•registers and memory

but are limited to those in operations used by M(.)

•Poincare map properties: Computation of M(.)
•sensitive to errors

- in constituent operations, and
- mechanisms used in storing and updating the states

•rate of divergence and its detectability depends on the
Lyapunov exponent

- generally, larger Lyapunov exponent values lead to
quicker divergence
- for tent map, except at X=1/2

Side Note: Codes with known outputs are routinely used for diagnosis of
computing systems – Poincare maps are among the least complex

L ln 2 0M  

Chaotic-Identity Map

Poincare map amplifies errors in operations used in its own computation

Chaotic-Identity Map:

Execution routed through
•computing operations
•memory locations
•interconnect links

to capture errors in them

Output is identical to
if there are no faults

It catches errors in specified
operations – instructions, sub-
routines, libraries

 i D iX I X

iX

 1i iX M X 

 D iI X

Chaotic-Identity map (CI-map) augments Poincare computation :
• Operation-Inverse Pairs: each update step with a sequence of pairs

each consisting of an operation and its inverse. Choice based on
instruction sets of CPU and GPU, sub-routines, libraries
• complement operations used by Poincare map operations.
Application of a pair of operations gives back the original operand
- error in either would be amplified by subsequent Poincare updates

•State Movement Operations: move state variable

• among the memory elements and/or
• across the interconnects, in each step

 before applying M(.)
Capture errors in memory and transmission across interconnect

• memory-to-memory transfers can be achieved by several means:
-additional variables in “shared” memory, explicit MPI calls

• application tracing: movements reflect execution paths of the
application - tracer codes are called from within them.

Chaotic-Identity Map

Outputs of CI-maps are used to generate confidence measures for executions,
particularly if no failures are detected

 executed at rate

- once every seconds
 . ; (.)DI M

Under statistical independence
probability of failure during executions

PR
1/ PR

Confidence:
that node failure probability is less than

If no failures are detected in executions

PN

 1/1 1
P

P

N

RP 

1/ PRP probability of node failure during sec 1/ PR

 , PC N



PN

   
 

2

2 1 1

1/, 1 2
NP

P

P

N

P RC N P P


 
        

Confidence Estimates

General Confidence Estimate:

If failures are detected in fraction of executions

General confidence estimate:

PN

   
 

2
ˆ2 1 1

1/, 1 2
NP

E P

P

P N

P RC N P P


 
         

Derivation: By Hoeffding’s Inequality we have

ˆ
EP

   22

1/
ˆ1 2

P
P

P

N
N

R EP P P
 

   

 
 

2

2 1 1

1/
ˆ 1 2

NP
P

P

N

R EP P P



        

Derivation of Confidence Estimate: Outline

By Hoeffding’s Inequality we have

   22

1/1 1 2
P

P

P

N
N

RP P
 

   

 
 

2

2 1 1

1/ 1 2
NP

P

P

N

RP P



       

PN


Generic CI-Map

Generic CI-map computation

 is computed on computing node

 output is sent to the computing node

 
,1 :j k Ji L D P iX I X 

 : jD P iI X
jP

kP , ii X

Trajectory generated by n Poincare map computations on node

Output of computation triplet

P
 0, , n P
n X X

 0, , nn X X

PCC-Chains

Poincare Computing and Communication chain
utilizes computations n processing nodes

 connected over interconnect such that
 is computed on and
 sent to over interconnect link

 0 1 1, , , nP P P  

 : iD P iI X iP

1iP

Output of this chain

 computed in time

 :cost of computing
 :cost of communicating over interconnect

  
1 1

P
,

nP nn M X
 

 M In T T

MT

IT

Pipelines of PCC-Chains

Compose a Pipelined Chains of Chaotic PCC maps (PCC -map) by using PCC-
chains such that:

 of k-th chain

•computed on at time i + k and
•sent to over interconnect link
•Example: computation sequence at is:

Computed in time: in parallel

Confidence bound:

 : i

k

D P i kI X 

iP
1iP

  M In k T T 

 
 

2
ˆ2 1 1

1 2
n k

PC

C

P N

P P


 
        

A pipeline with chains and node-periodicity uses
consecutive block of nodes:

• chains sweep across all N nodes
• for full pipeline

Pn PT

P Pn T

0P      
0 0 0

0 1 2

: 0 : 1 : 2, , ,D P D P D PI X I X I X

2

Confidence Estimates

k = 10, n = 10; no detected errors

0.001,0.01,0.1 

With no detected faults,
higher confidences with:
(a) deeper pipelines
(b) more components
(c) lower precisions

Certain confidence levels can only be achieved with
“deep enough” pipelines

0.1  0.01 

0.001  0.001,0.01,0.1 

Simulation Results

We simulate three types of errors:
i. ALU errors corrupt state by a multiplier

• bit flip to 1 in ALU registers
ii. memory errors clamp state to a fixed value

• stuck-at fault in RAM
iii. cross-connect errors modify state by a multiplier.

• link transmission error

Nodes transition to a faulty mode with probability p, and
once transitioned

•errors type (i) and (ii) are permanent,
•error type (iii) lasts only for a single time step

Computation of PCC-chain is routed through nodes via interconnect

Simulation Abstraction

Case of no faults:
10-node pipeline of depth k = 10

• none are detected
• all chaotic time traces are
identical across nodes

Simulation Results: No Faults

ground truth: no faults

trajectories

detector output: none
;

Simulation Results

Stuck-at faults:
•full pipeline, spanning all 10
nodes
•trajectories disrupted by faulty
nodes

•detection within one time step

detector output:
two detected

ground truth:
two stuck-at faults

Simulation Results

Pipeline of single chain
•executed by one node at time
•chain “sweeps” across nodes in time

Both faults are detected:

•detection delayed until the chain
reaches faulty node

The total computational cost:

•1/10 of the case (b)
•detection achieved, albeit delayed by
few time steps detector output:

two detected

ground truth:
two stuck-at faults

Simulation Results

Transient fault in interconnect
payload lasted for one time unit

Full pipeline spanning all nodes will
detect such failure

Pipeline of two chains with
periodicity of 5 nodes is able to
detect

detector output:
two detected

ground truth:
two transient faults

Simulation System

Simulations on 48-core Linux workstation: 2.23GHz AMD Opteron processors

Computation on a single processor core and delay of 10 micro seconds to
simulate the latency of interconnect.

• N = 500,000 nodes: runtimes under 2 seconds for
 - logistic map and a pair of reciprocal operations (5 operations for CI-map).

First-order approximation: for CI-map

•10 operations each with 10 micro seconds execution time, and
•interconnect with 10 microsecond latency

pipeline execution time is 11 seconds for N=100,000

All chains of PCC -map are computed in parallel

•execution time scales linearly in N
•under 2 minutes for million computing nodes

2

application
code

Replicated Application Execution

 system profiling

confidence estimation

application
code

profiling specifies
replication level

tr
a
ce

application
code

tr
a
ce

 application
code

tr
a
ce

application
operations

set replication level

•Our approach “informs” application and quantifies its output
•Check-pointing can be similarly “informed” – failure rate
estimates specify check-pointing frequency

profiling customized to
application

application
with traces

computing
system

output of traces used
for confidence
estimation

Conclusions

Our approach
(i) utilizes light-weight computations based on chaotic and identity maps to

detect certain classes of errors in computations, and
(ii) estimates system robustness and confidences of computations
We illustrated the concepts using simulation examples.

This approach is suitable for exascale systems:

(a) low computational requirements
(b) linear scaling of the execution time

both for system profiling and application tracing

Future Work:

•These results are only a very first step
•More analysis and simulations needed

- understand and quantify classes of errors detected by a given set of
Poincare and identity maps

•Statistical estimates are only first-order approximations:
- further research required to handle correlated failures.

Thank you

